首页
留言
导航
统计
Search
1
追番推荐!免费看动漫的网站 - 支持在线观看和磁力下载
777 阅读
2
PVE自动启动 虚拟机 | 容器 顺序设置及参数说明
472 阅读
3
一条命令,永久激活!Office 2024!
444 阅读
4
优选 Cloudflare 官方 / 中转 IP
324 阅读
5
[Windows] MicroSoft Office LTSC Professional Plus 2024 官方安装部署工具
323 阅读
默认分类
服务器
宝塔
VPS
Docker
OpenWRT
Nginx
群晖
前端编程
Vue
React
Angular
NodeJS
uni-app
后端编程
Java
Python
SpringBoot
SpringCloud
流程引擎
检索引擎
Linux
CentOS
Ubuntu
Debian
数据库
Redis
MySQL
Oracle
虚拟机
VMware
VirtualBox
PVE
Hyper-V
计算机
网络技术
网站源码
主题模板
登录
Search
标签搜索
Java
小程序
Redis
SpringBoot
docker
Typecho
Cloudflare
虚拟机
WordPress
uni-app
CentOS
docker部署
Vue
Java类库
群晖
Linux命令
防火墙配置
Mysql
脚本
计算机网络
流年微醺
累计撰写
255
篇文章
累计收到
8
条评论
首页
栏目
默认分类
服务器
宝塔
VPS
Docker
OpenWRT
Nginx
群晖
前端编程
Vue
React
Angular
NodeJS
uni-app
后端编程
Java
Python
SpringBoot
SpringCloud
流程引擎
检索引擎
Linux
CentOS
Ubuntu
Debian
数据库
Redis
MySQL
Oracle
虚拟机
VMware
VirtualBox
PVE
Hyper-V
计算机
网络技术
网站源码
主题模板
页面
留言
导航
统计
搜索到
2
篇与
的结果
2023-10-21
JAVA实现订单 30 分钟未支付则自动取消,我有五种方案!
引言方案分析(1)数据库轮询(2)JDK的延迟队列(3)时间轮算法(4)redis缓存(5)使用消息队列总结引言在开发中,往往会遇到一些关于延时任务的需求。例如:生成订单30分钟未支付,则自动取消;生成订单60秒后,给用户发短信。对上述的任务,我们给一个专业的名字来形容,那就是 延时任务 。那么这里就会产生一个问题,这个 延时任务和定时任务 的区别究竟在哪里呢?一共有如下几点区别:定时任务有明确的触发时间,延时任务没有;定时任务有执行周期,而延时任务在某事件触发后一段时间内执行,没有执行周期;定时任务一般执行的是批处理操作是多个任务,而延时任务一般是单个任务。下面,我们以判断订单是否超时为例,进行方案分析。方案分析(1) 数据库轮询思路 该方案通常是在小型项目中使用,即通过一个线程定时的去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行update或delete等操作。实现 博主当年早期是用 quartz 来实现的(实习那会的事),简单介绍一下 maven 项目引入一个依赖如下所示<dependency> <groupId>org.quartz-scheduler</groupId> <artifactId>quartz</artifactId> <version>2.2.2</version> </dependency>调用Demo类MyJob如下所示package com.rjzheng.delay1; import org.quartz.JobBuilder; import org.quartz.JobDetail; import org.quartz.Scheduler; import org.quartz.SchedulerException; import org.quartz.SchedulerFactory; import org.quartz.SimpleScheduleBuilder; import org.quartz.Trigger; import org.quartz.TriggerBuilder; import org.quartz.impl.StdSchedulerFactory; import org.quartz.Job; import org.quartz.JobExecutionContext; import org.quartz.JobExecutionException; public class MyJob implements Job { public void execute(JobExecutionContext context) throws JobExecutionException { System.out.println("要去数据库扫描啦。。。"); } public static void main(String[] args) throws Exception { // 创建任务 JobDetail jobDetail = JobBuilder.newJob(MyJob.class) .withIdentity("job1", "group1").build(); // 创建触发器 每3秒钟执行一次 Trigger trigger = TriggerBuilder .newTrigger() .withIdentity("trigger1", "group3") .withSchedule( SimpleScheduleBuilder.simpleSchedule() .withIntervalInSeconds(3).repeatForever()) .build(); Scheduler scheduler = new StdSchedulerFactory().getScheduler(); // 将任务及其触发器放入调度器 scheduler.scheduleJob(jobDetail, trigger); // 调度器开始调度任务 scheduler.start(); } }运行代码,可发现每隔3秒,输出如下要去数据库扫描啦。。。优缺点 优点: 简单易行,支持集群操作。缺点:(1)对服务器内存消耗大;(2)存在延迟,比如你每隔3分钟扫描一次,那最坏的延迟时间就是3分钟;(3)假设你的订单有几千万条,每隔几分钟这样扫描一次,数据库损耗极大。(2) JDK的延迟队列思路 该方案是利用 JDK 自带的 DelayQueue 来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入DelayQueue中的对象,是必须实现Delayed接口的。DelayedQueue实现工作流程如下图所示其中poll(): 获取并移除队列的超时元素,没有则返回空;take(): 获取并移除队列的超时元素,如果没有则wait当前线程,直到有元素满足超时条件,返回结果。实现定义一个类OrderDelay实现Delayed,代码如下:package com.rjzheng.delay2; import java.util.concurrent.Delayed; import java.util.concurrent.TimeUnit; public class OrderDelay implements Delayed { private String orderId; private long timeout; OrderDelay(String orderId, long timeout) { this.orderId = orderId; this.timeout = timeout + System.nanoTime(); } public int compareTo(Delayed other) { if (other == this) return 0; OrderDelay t = (OrderDelay) other; long d = (getDelay(TimeUnit.NANOSECONDS) - t .getDelay(TimeUnit.NANOSECONDS)); return (d == 0) ? 0 : ((d < 0) ? -1 : 1); } // 返回距离你自定义的超时时间还有多少 public long getDelay(TimeUnit unit) { return unit.convert(timeout - System.nanoTime(), TimeUnit.NANOSECONDS); } void print() { System.out.println(orderId+"编号的订单要删除啦。。。。"); } }运行的测试Demo为,我们设定延迟时间为3秒。package com.rjzheng.delay2; import java.util.ArrayList; import java.util.List; import java.util.concurrent.DelayQueue; import java.util.concurrent.TimeUnit; public class DelayQueueDemo { public static void main(String[] args) { // TODO Auto-generated method stub List<String> list = new ArrayList<String>(); list.add("00000001"); list.add("00000002"); list.add("00000003"); list.add("00000004"); list.add("00000005"); DelayQueue<OrderDelay> queue = new DelayQueue<OrderDelay>(); long start = System.currentTimeMillis(); for(int i = 0;i<5;i++){ //延迟三秒取出 queue.put(new OrderDelay(list.get(i), TimeUnit.NANOSECONDS.convert(3, TimeUnit.SECONDS))); try { queue.take().print(); System.out.println("After " + (System.currentTimeMillis()-start) + " MilliSeconds"); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } }输出如下:00000001编号的订单要删除啦。。。。 After 3003 MilliSeconds 00000002编号的订单要删除啦。。。。 After 6006 MilliSeconds 00000003编号的订单要删除啦。。。。 After 9006 MilliSeconds 00000004编号的订单要删除啦。。。。 After 12008 MilliSeconds 00000005编号的订单要删除啦。。。。 After 15009 MilliSeconds可以看到都是延迟3秒,订单被删除。优缺点 优点: 效率高,任务触发时间延迟低。缺点:(1) 服务器重启后,数据全部消失,怕宕机;(2) 集群扩展相当麻烦;(3) 因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常;(4) 代码复杂度较高。(3) 时间轮算法思路 先上一张时间轮的图(这图到处都是啦)时间轮算法可以类比于时钟,如上图箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。这样可以看出定时轮由个3个重要的属性参数,ticksPerWheel(一轮的tick数),tickDuration(一个tick的持续时间)以及 timeUnit(时间单位),例如当ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和现实中的始终的秒针走动完全类似了。如果当前指针指在1上面,我有一个任务需要4秒以后执行,那么这个执行的线程回调或者消息将会被放在5上。那如果需要在20秒之后执行怎么办,由于这个环形结构槽数只到8,如果要20秒,指针需要多转2圈。位置是在2圈之后的5上面(20 % 8 + 1)。实现 我们用Netty的HashedWheelTimer来实现 给Pom加上下面的依赖:<dependency> <groupId>io.netty</groupId> <artifactId>netty-all</artifactId> <version>4.1.24.Final</version> </dependency>测试代码HashedWheelTimerTest,如下所示:package com.rjzheng.delay3; import io.netty.util.HashedWheelTimer; import io.netty.util.Timeout; import io.netty.util.Timer; import io.netty.util.TimerTask; import java.util.concurrent.TimeUnit; public class HashedWheelTimerTest { static class MyTimerTask implements TimerTask{ boolean flag; public MyTimerTask(boolean flag){ this.flag = flag; } public void run(Timeout timeout) throws Exception { // TODO Auto-generated method stub System.out.println("要去数据库删除订单了。。。。"); this.flag =false; } } public static void main(String[] argv) { MyTimerTask timerTask = new MyTimerTask(true); Timer timer = new HashedWheelTimer(); timer.newTimeout(timerTask, 5, TimeUnit.SECONDS); int i = 1; while(timerTask.flag){ try { Thread.sleep(1000); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } System.out.println(i+"秒过去了"); i++; } } }输出如下:1秒过去了 2秒过去了 3秒过去了 4秒过去了 5秒过去了 要去数据库删除订单了。。。。 6秒过去了优缺点 优点: 效率高,任务触发时间延迟时间比delayQueue低,代码复杂度比delayQueue低。缺点:(1) 服务器重启后,数据全部消失,怕宕机;(2) 集群扩展相当麻烦;(3) 因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常。(4) redis缓存思路一 利用 redis 的 zset ,zset是一个有序集合,每一个元素(member)都关联了一个score,通过score排序来取集合中的值。zset常用命令添加元素:ZADD key score member [[score member] [score member] ...]按顺序查询元素:ZRANGE key start stop [WITHSCORES]查询元素score:ZSCORE key member移除元素:ZREM key member [member ...]测试如下: # 添加单个元素 redis> ZADD page_rank 10 google.com (integer) 1 # 添加多个元素 redis> ZADD page_rank 9 baidu.com 8 bing.com (integer) 2 redis> ZRANGE page_rank 0 -1 WITHSCORES 1) "bing.com" 2) "8" 3) "baidu.com" 4) "9" 5) "google.com" 6) "10" # 查询元素的score值 redis> ZSCORE page_rank bing.com "8" # 移除单个元素 redis> ZREM page_rank google.com (integer) 1 redis> ZRANGE page_rank 0 -1 WITHSCORES 1) "bing.com" 2) "8" 3) "baidu.com" 4) "9"那么如何实现呢?我们将订单超时时间戳与订单号分别设置为 score 和 member ,系统扫描第一个元素判断是否超时,具体如下图所示:实现一package com.rjzheng.delay4; import java.util.Calendar; import java.util.Set; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; import redis.clients.jedis.Tuple; public class AppTest { private static final String ADDR = "127.0.0.1"; private static final int PORT = 6379; private static JedisPool jedisPool = new JedisPool(ADDR, PORT); public static Jedis getJedis() { return jedisPool.getResource(); } //生产者,生成5个订单放进去 public void productionDelayMessage(){ for(int i=0;i<5;i++){ //延迟3秒 Calendar cal1 = Calendar.getInstance(); cal1.add(Calendar.SECOND, 3); int second3later = (int) (cal1.getTimeInMillis() / 1000); AppTest.getJedis().zadd("OrderId", second3later,"OID0000001"+i); System.out.println(System.currentTimeMillis()+"ms:redis生成了一个订单任务:订单ID为"+"OID0000001"+i); } } //消费者,取订单 public void consumerDelayMessage(){ Jedis jedis = AppTest.getJedis(); while(true){ Set<Tuple> items = jedis.zrangeWithScores("OrderId", 0, 1); if(items == null || items.isEmpty()){ System.out.println("当前没有等待的任务"); try { Thread.sleep(500); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } continue; } int score = (int) ((Tuple)items.toArray()[0]).getScore(); Calendar cal = Calendar.getInstance(); int nowSecond = (int) (cal.getTimeInMillis() / 1000); if(nowSecond >= score){ String orderId = ((Tuple)items.toArray()[0]).getElement(); jedis.zrem("OrderId", orderId); System.out.println(System.currentTimeMillis() +"ms:redis消费了一个任务:消费的订单OrderId为"+orderId); } } } public static void main(String[] args) { AppTest appTest =new AppTest(); appTest.productionDelayMessage(); appTest.consumerDelayMessage(); } }此时对应输出如下:1525086085261ms:redis生成了一个订单任务:订单ID为OID00000010 1525086085263ms:redis生成了一个订单任务:订单ID为OID00000011 1525086085266ms:redis生成了一个订单任务:订单ID为OID00000012 1525086085268ms:redis生成了一个订单任务:订单ID为OID00000013 1525086085270ms:redis生成了一个订单任务:订单ID为OID00000014 1525086088000ms:redis消费了一个任务:消费的订单OrderId为OID00000010 1525086088001ms:redis消费了一个任务:消费的订单OrderId为OID00000011 1525086088002ms:redis消费了一个任务:消费的订单OrderId为OID00000012 1525086088003ms:redis消费了一个任务:消费的订单OrderId为OID00000013 1525086088004ms:redis消费了一个任务:消费的订单OrderId为OID00000014 当前没有等待的任务 当前没有等待的任务 当前没有等待的任务可以看到,几乎都是3秒之后,消费订单。然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,我们上测试代码 ThreadTest 。package com.rjzheng.delay4; import java.util.concurrent.CountDownLatch; public class ThreadTest { private static final int threadNum = 10; private static CountDownLatch cdl = new CountDownLatch(threadNum); static class DelayMessage implements Runnable{ public void run() { try { cdl.await(); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } AppTest appTest =new AppTest(); appTest.consumerDelayMessage(); } } public static void main(String[] args) { AppTest appTest =new AppTest(); appTest.productionDelayMessage(); for(int i=0;i<threadNum;i++){ new Thread(new DelayMessage()).start(); cdl.countDown(); } } }输出如下所示:1525087157727ms:redis生成了一个订单任务:订单ID为OID00000010 1525087157734ms:redis生成了一个订单任务:订单ID为OID00000011 1525087157738ms:redis生成了一个订单任务:订单ID为OID00000012 1525087157747ms:redis生成了一个订单任务:订单ID为OID00000013 1525087157753ms:redis生成了一个订单任务:订单ID为OID00000014 1525087160009ms:redis消费了一个任务:消费的订单OrderId为OID00000010 1525087160011ms:redis消费了一个任务:消费的订单OrderId为OID00000010 1525087160012ms:redis消费了一个任务:消费的订单OrderId为OID00000010 1525087160022ms:redis消费了一个任务:消费的订单OrderId为OID00000011 1525087160023ms:redis消费了一个任务:消费的订单OrderId为OID00000011 1525087160029ms:redis消费了一个任务:消费的订单OrderId为OID00000011 1525087160038ms:redis消费了一个任务:消费的订单OrderId为OID00000012 1525087160045ms:redis消费了一个任务:消费的订单OrderId为OID00000012 1525087160048ms:redis消费了一个任务:消费的订单OrderId为OID00000012 1525087160053ms:redis消费了一个任务:消费的订单OrderId为OID00000013 1525087160064ms:redis消费了一个任务:消费的订单OrderId为OID00000013 1525087160065ms:redis消费了一个任务:消费的订单OrderId为OID00000014 1525087160069ms:redis消费了一个任务:消费的订单OrderId为OID00000014 当前没有等待的任务 当前没有等待的任务 当前没有等待的任务 当前没有等待的任务显然,出现了多个线程消费同一个资源的情况。解决方案(1) 用分布式锁,但是用分布式锁,性能下降了,该方案不细说;(2) 对ZREM的返回值进行判断,只有大于0的时候,才消费数据,于是将 consumerDelayMessage() 方法里的。if(nowSecond >= score){ String orderId = ((Tuple)items.toArray()[0]).getElement(); jedis.zrem("OrderId", orderId); System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId); }修改为:if(nowSecond >= score){ String orderId = ((Tuple)items.toArray()[0]).getElement(); Long num = jedis.zrem("OrderId", orderId); if( num != null && num>0){ System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId); } }在这种修改后,重新运行ThreadTest类,发现输出正常了。思路二 该方案使用 redis 的 Keyspace Notifications ,中文翻译就是键空间机制,就是利用该机制可以在key失效之后,提供一个回调,实际上是redis会给客户端发送一个消息。是需要 redis版本2.8以上 。实现二 在 redis.conf 中,加入一条配置:notify-keyspace-events Ex运行代码如下:package com.rjzheng.delay5; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; import redis.clients.jedis.JedisPubSub; public class RedisTest { private static final String ADDR = "127.0.0.1"; private static final int PORT = 6379; private static JedisPool jedis = new JedisPool(ADDR, PORT); private static RedisSub sub = new RedisSub(); public static void init() { new Thread(new Runnable() { public void run() { jedis.getResource().subscribe(sub, "__keyevent@0__:expired"); } }).start(); } public static void main(String[] args) throws InterruptedException { init(); for(int i =0;i<10;i++){ String orderId = "OID000000"+i; jedis.getResource().setex(orderId, 3, orderId); System.out.println(System.currentTimeMillis()+"ms:"+orderId+"订单生成"); } } static class RedisSub extends JedisPubSub { @Override public void onMessage(String channel, String message) { System.out.println(System.currentTimeMillis()+"ms:"+message+"订单取消"); } } }输出如下:1525096202813ms:OID0000000订单生成 1525096202818ms:OID0000001订单生成 1525096202824ms:OID0000002订单生成 1525096202826ms:OID0000003订单生成 1525096202830ms:OID0000004订单生成 1525096202834ms:OID0000005订单生成 1525096202839ms:OID0000006订单生成 1525096205819ms:OID0000000订单取消 1525096205920ms:OID0000005订单取消 1525096205920ms:OID0000004订单取消 1525096205920ms:OID0000001订单取消 1525096205920ms:OID0000003订单取消 1525096205920ms:OID0000006订单取消 1525096205920ms:OID0000002订单取消可以明显看到3秒过后,订单取消了。ps: redis的pub/sub 机制存在一个硬伤,官网内容如下:原: Because Redis Pub/Sub is fire and forget currently there is no way to use this feature if your application demands reliable notification of events, that is, if your Pub/Sub client disconnects, and reconnects later, all the events delivered during the time the client was disconnected are lost.翻: Redis的发布/订阅目前是即发即弃(fire and forget)模式的,因此无法实现事件的可靠通知。也就是说,如果发布/订阅的客户端断链之后又重连,则在客户端断链期间的所有事件都丢失了。因此,方案二不是太推荐。当然,如果你对可靠性要求不高,可以使用。优缺点 优点:(1) 由于使用Redis作为消息通道,消息都存储在Redis中。如果发送程序或者任务处理程序挂了,重启之后,还有重新处理数据的可能性;(2) 做集群扩展相当方便;(3) 时间准确度高。缺点: (1) 需要额外进行redis维护。(5) 使用消息队列我们可以采用 RabbitMQ 的延时队列。RabbitMQ 具有以下两个特性,可以实现延迟队列:(1)RabbitMQ可以针对Queue和Message设置 x-message-tt,来控制消息的生存时间,如果超时,则消息变为dead letter(2)lRabbitMQ的Queue可以配置x-dead-letter-exchange 和x-dead-letter-routing-key(可选)两个参数,用来控制队列内出现了deadletter,则按照这两个参数重新路由。结合以上两个特性,就可以模拟出延迟消息的功能,具体的,我改天再写一篇文章,这里再讲下去,篇幅太长。优缺点优点: 高效,可以利用rabbitmq的分布式特性轻易的进行横向扩展,消息支持持久化增加了可靠性。缺点:本身的易用度要依赖于rabbitMq的运维。因为要引用rabbitMq,所以复杂度和成本变高。总结本文总结了目前互联网中,绝大部分的延时任务的实现方案。希望大家在工作中能够有所收获。
2023年10月21日
8 阅读
0 评论
0 点赞
2023-02-16
Docker部署 Mysql、redis、Rabbitmq、Vue、Java 项目
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux 或 Windows 机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口。本文主要讲解如何在Linux环境下使用 Docker 部署前后端分离项目,其中涉及到使用 Docker 安装本人项目相关的一些环境 ,例如mysql、rabbitmq、redis,基于CenterOS7.0。Docker 环境安装1.安装 Docker 客户端# step 1: 安装必要的一些系统工具 sudo yum install -y yum-utils device-mapper-persistent-data lvm2 # Step 2: 添加软件源信息 sudo yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo # Step 3: 更新并安装 Docker-CE sudo yum makecache fast sudo yum -y install docker-ce # Step 4: 开启Docker服务 sudo service docker start2.配置镜像加速器sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.json <<-'EOF' { "registry-mirrors": ["https://sq2b0kv9.mirror.aliyuncs.com"] } EOF sudo systemctl daemon-reload sudo systemctl restart docker安装 PortainerPortainer 是一个轻量级 Web 端的 Docker 管理 UI,Portainer 够轻松地管理不同的 Docker 环境(Docker 主机或集群)。Portainer 的部署和使用十分简单。Portainer 可以部署为 Linux 容器或 Windows 本机容器,也支持其他平台。Portainer 允许您管理所有 Docker 资源(容器、映像、卷、网络等)!它与独立的 Docker 引擎和 Docker 集群模式兼容。1.安装# 拉取官方镜像 docker pull portainer/portainer # 运行镜像到容器 docker run -d -p 9000:9000\ --restart=always\ -v /var/run/docker.sock:/var/run/docker.sock\ -m 20M --oom-kill-disable --memory-swap=-1\ --name portainer\ portainer/portainer2.访问页面访问地址:http://localhost:9000,第一次打开需要设置用户名、密码,docker 模式我一般选择 Local 本机模式。通过此工具我们可以更加简便的对镜像和容器进行操作和管理。登录页 面板页 安装 mysql# docker search mysql 可通过此命令查看可用版本 # 拉取mysql镜像,默认会拉取最新版本,我这里加上版本号 docker pull mysql:8.0.0 # 查看镜像是否拉取成功 docker images # 在/home/docker/mysql目录下创建mysql挂载目录 mkdir {data,logs,conf} # 运行容器 docker run -d -p 3306:3306 -v /home/docker/mysql/my.cnf:/etc/mysql/conf.d/mysqld.cnf -v /home/docker/mysql/data:/var/lib/mysql -v /home/docker/mysql/logs:/var/log/mysql -e MYSQL_ROOT_PASSWORD=12345 --name mysql_test mysql:8.0.0说明:--name:容器名-e:配置信息,此处配置 mysql 的 root 用户登陆密码-d:后台运行容器,保证在退出终端后容器继续运行-p:端口映射,此处映射 主机 3306 端口 到 容器的 3306 端口-v:挂载目录此处需要注意不要直接挂载容器中的 mysql 配置文件目录,可能会将容器内的配置文件目录清空。个人建议将容器中的 my.cnf 文件复制出来进行选择性的修改,再挂载 mysql.cnf 文件即可。docker cp :用于容器与主机之间的数据拷贝。# 语法 docker cp [OPTIONS] CONTAINER:SRC_PATH DEST_PATH|- # 实例 docker cp 96f7f14e99ab:/etc/mysql/conf.d/mysqld.cnf /home/docker/mysql/my.cnf安装 redis因为 redis 默认配置只能够本地连接,不能进行远程访问,使用 Redis 客户端工具连接都会报错,因此需要手动挂载 redis 配置文件。# /home/docker/redis目录下新增挂载文件夹 mkdir {data,conf} # 下载最新版本的Redis镜像 docker pull redis # 新增redis配置文件 cd /home/docker/redis/conf touch redis.conf vim redis.conf添加以下内容#bind 127.0.0.1 protected-mode no appendonly yes requirepass 123456说明:bind 127.0.0.1 ,注释掉这部分,这是限制 redis 只能本地访问protected-mode:默认 yes,开启保护模式,限制为本地访问appendonly:redis 持久化(可选)requirepass:设置访问密码为 123456运行容器docker run --name myredis -p 6379:6379 -v /home/docker/redis/data:/data -v /home/docker/redis/conf/redis.conf:/etc/redis/redis.conf -d redis redis-server /etc/redis/redis.conf说明:--name:容器名称-p :表示将服务器的 6379(冒号前的 6379)端口映射到 docker 的 6379(冒号后的 6379)端口-d :表示以后台服务的形式运行 redis-v :挂载宿主机目录redis redis-server /etc/redis/redis.conf:表示运行 redis 服务器程序,并且指定运行时的配置文件经过以上步骤,便可以通过 redis 客户端工具进行连接,如果连接不上,检查安全组和服务器防火墙端口是否开放安装 rabbitmq# 拉取带图形化管理界面的镜像 docker pull rabbitmq:3.7.7-management # 根据下载的镜像创建和启动容器 docker run -d --name rabbitmq3.7.7 -p 5672:5672 -p 15672:15672 -v `pwd`/data:/var/lib/rabbitmq --hostname myRabbit -e RABBITMQ_DEFAULT_VHOST=my_vhost -e RABBITMQ_DEFAULT_USER=admin -e RABBITMQ_DEFAULT_PASS=admin df80af9ca0c9说明:-d:后台运行容器;--name:指定容器名;-p:指定服务运行的端口(5672:应用访问端口;15672:控制台 Web 端口号);-v:映射目录或文件;--hostname :主机名(RabbitMQ 的一个重要注意事项是它根据所谓的 “节点名称” 存储数据,默认为主机名);-e:指定环境变量;(RABBITMQ_DEFAULT_VHOST:默认虚拟机名;RABBITMQ_DEFAULT_USER:默认的用户名;RABBITMQ_DEFAULT_PASS:默认用户名的密码)Rabbitmq 访问地址:http://localhost:15672 至此,基本的运行环境都安装完毕,下面就是关键的打包步骤了。Vue 前端项目打包将 dist 下的所有文件目录拷贝到 SpringBoot 后端项目的 resources\static 目录下,static 目录需要新建。如果你的项目中用到了 shiro 或者 spring security 等安全框架,需要对静态资源放行。以上配置完成后,先在本地运行,再用 maven 进行打包。将 jar 包上传到服务器后,就要开始制作自己的镜像了,首先在与 jar 包同目录下新建 Dockerfile 文件。# 新建Dockerfile文件 touch Dockerfile # 编写Dockerfile文件 vim Dockerfile加入以下内容# Docker image for springboot file run # VERSION 0.0.1 FROM java:8 # VOLUME 指定了临时文件目录为/tmp。 # 其效果是在主机 /var/lib/docker 目录下创建了一个临时文件,并链接到容器的/tmp VOLUME /tmp # 将jar包添加到容器中并更名为app.jar ADD demo-01.jar app.jar # 运行jar包 RUN bash -c 'touch /app.jar' ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./urandom","-jar","/app.jar"]执行 docker build -t [镜像名称] . ,至此镜像文件就制作完成了。docker images查看镜像是否存在。最后一步,创建并启动容器,docker run --name [容器名称] -d -p 80:8080 [镜像名]。
2023年02月16日
32 阅读
0 评论
0 点赞