首页
留言
导航
统计
Search
1
追番推荐!免费看动漫的网站 - 支持在线观看和磁力下载
829 阅读
2
PVE自动启动 虚拟机 | 容器 顺序设置及参数说明
491 阅读
3
一条命令,永久激活!Office 2024!
452 阅读
4
优选 Cloudflare 官方 / 中转 IP
334 阅读
5
[Windows] MicroSoft Office LTSC Professional Plus 2024 官方安装部署工具
328 阅读
默认分类
服务器
宝塔
VPS
Docker
OpenWRT
Nginx
群晖
前端编程
Vue
React
Angular
NodeJS
uni-app
后端编程
Java
Python
SpringBoot
SpringCloud
流程引擎
检索引擎
Linux
CentOS
Ubuntu
Debian
数据库
Redis
MySQL
Oracle
虚拟机
VMware
VirtualBox
PVE
Hyper-V
计算机
网络技术
网站源码
主题模板
登录
Search
标签搜索
Java
小程序
Redis
SpringBoot
docker
Typecho
Cloudflare
虚拟机
WordPress
uni-app
CentOS
docker部署
Vue
Java类库
群晖
Linux命令
防火墙配置
Mysql
脚本
计算机网络
流年微醺
累计撰写
256
篇文章
累计收到
8
条评论
首页
栏目
默认分类
服务器
宝塔
VPS
Docker
OpenWRT
Nginx
群晖
前端编程
Vue
React
Angular
NodeJS
uni-app
后端编程
Java
Python
SpringBoot
SpringCloud
流程引擎
检索引擎
Linux
CentOS
Ubuntu
Debian
数据库
Redis
MySQL
Oracle
虚拟机
VMware
VirtualBox
PVE
Hyper-V
计算机
网络技术
网站源码
主题模板
页面
留言
导航
统计
搜索到
7
篇与
的结果
2023-12-27
超越Redis,新一代Redis Plus来了,性能炸裂!
线程模型链接管理锁机制Active-Replica今天给大家介绍的是 KeyDB ,KeyDB项目是从redis fork出来的分支。众所周知redis是一个单线程的kv内存存储系统,而KeyDB在100%兼容redis API的情况下将redis改造成多线程。上次也跟大家说了,项目地址是:https://github.com/EQ-Alpha/KeyDB线程模型KeyDB 将 redis 原来的主线程拆分成了 主线程 和 worker线程 。每个worker线程都是io线程,负责监听端口,accept请求,读取数据和解析协议。如图所示:KeyDB使用了SO_REUSEPORT特性,多个线程可以绑定监听同个端口。每个worker线程做了cpu绑核,读取数据也使用了SO_INCOMING_CPU特性,指定cpu接收数据。解析协议之后每个线程都会去操作内存中的数据,由一把全局锁来控制多线程访问内存数据。主线程其实也是一个worker线程,包括了worker线程的工作内容,同时也包括只有主线程才可以完成的工作内容。在worker线程数组中下标为0的就是主线程。主线程的主要工作在实现 serverCron ,包括:处理统计客户端链接管理db数据的resize和reshard处理aofreplication主备同步cluster模式下的任务链接管理在redis中所有链接管理都是在一个线程中完成的。在KeyDB的设计中,每个worker线程负责一组链接,所有的链接插入到本线程的链接列表中维护。链接的产生、工作、销毁必须在同个线程中。每个链接新增一个字段int iel; /* the event loop index we're registered with */用来表示链接属于哪个线程接管。KeyDB维护了三个关键的数据结构做链接管理:clients_pending_write:线程专属的链表,维护同步给客户链接发送数据的队列clients_pending_asyncwrite:线程专属的链表,维护异步给客户链接发送数据的队列clients_to_close:全局链表,维护需要异步关闭的客户链接分成同步和异步两个队列,是因为redis有些联动api,比如pub/sub,pub之后需要给sub的客户端发送消息,pub执行的线程和sub的客户端所在线程不是同一个线程,为了处理这种情况,KeyDB将需要给非本线程的客户端发送数据维护在异步队列中。同步发送的逻辑比较简单,都是在本线程中完成,以下图来说明如何同步给客户端发送数据:如上文所提到的,一个链接的创建、接收数据、发送数据、释放链接都必须在同个线程执行。异步发送涉及到两个线程之间的交互。KeyDB通过管道在两个线程中传递消息:int fdCmdWrite; //写管道 int fdCmdRead; //读管道本地线程需要异步发送数据时,先检查client是否属于本地线程,非本地线程获取到client专属的线程ID,之后给专属的线程管到发送AE_ASYNC_OP::CreateFileEvent的操作,要求添加写socket事件。专属线程在处理管道消息时将对应的请求添加到写事件中,如图所示:redis有些关闭客户端的请求并非完全是在链接所在的线程执行关闭,所以在这里维护了一个全局的异步关闭链表。锁机制KeyDB实现了一套类似spinlock的锁机制,称之为fastlock。fastlock的主要数据结构有:int fdCmdWrite; //写管道 int fdCmdRead; //读管道使用原子操作__atomic_load_2,__atomic_fetch_add,__atomic_compare_exchange来通过比较m_active=m_avail判断是否可以获取锁。fastlock提供了两种获取锁的方式:try_lock:一次获取失败,直接返回lock:忙等,每1024 * 1024次忙等后使用sched_yield 主动交出cpu,挪到cpu的任务末尾等待执行。在KeyDB中将try_lock和事件结合起来,来避免忙等的情况发生。每个客户端有一个专属的lock,在读取客户端数据之前会先尝试加锁,如果失败,则退出,因为数据还未读取,所以在下个epoll_wait处理事件循环中可以再次处理。Active-ReplicaKeyDB实现了多活的机制,每个replica可设置成可写非只读,replica之间互相同步数据。主要特性有:每个replica有个uuid标志,用来去除环形复制新增加rreplay API,将增量命令打包成rreplay命令,带上本地的uuidkey,value加上时间戳版本号,作为冲突校验,如果本地有相同的key且时间戳版本号大于同步过来的数据,新写入失败。采用当前时间戳向左移20位,再加上后44位自增的方式来获取key的时间戳版本号。项目地址:https://github.com/EQ-Alpha/KeyDB
2023年12月27日
7 阅读
0 评论
0 点赞
2023-10-21
JAVA实现订单 30 分钟未支付则自动取消,我有五种方案!
引言方案分析(1)数据库轮询(2)JDK的延迟队列(3)时间轮算法(4)redis缓存(5)使用消息队列总结引言在开发中,往往会遇到一些关于延时任务的需求。例如:生成订单30分钟未支付,则自动取消;生成订单60秒后,给用户发短信。对上述的任务,我们给一个专业的名字来形容,那就是 延时任务 。那么这里就会产生一个问题,这个 延时任务和定时任务 的区别究竟在哪里呢?一共有如下几点区别:定时任务有明确的触发时间,延时任务没有;定时任务有执行周期,而延时任务在某事件触发后一段时间内执行,没有执行周期;定时任务一般执行的是批处理操作是多个任务,而延时任务一般是单个任务。下面,我们以判断订单是否超时为例,进行方案分析。方案分析(1) 数据库轮询思路 该方案通常是在小型项目中使用,即通过一个线程定时的去扫描数据库,通过订单时间来判断是否有超时的订单,然后进行update或delete等操作。实现 博主当年早期是用 quartz 来实现的(实习那会的事),简单介绍一下 maven 项目引入一个依赖如下所示<dependency> <groupId>org.quartz-scheduler</groupId> <artifactId>quartz</artifactId> <version>2.2.2</version> </dependency>调用Demo类MyJob如下所示package com.rjzheng.delay1; import org.quartz.JobBuilder; import org.quartz.JobDetail; import org.quartz.Scheduler; import org.quartz.SchedulerException; import org.quartz.SchedulerFactory; import org.quartz.SimpleScheduleBuilder; import org.quartz.Trigger; import org.quartz.TriggerBuilder; import org.quartz.impl.StdSchedulerFactory; import org.quartz.Job; import org.quartz.JobExecutionContext; import org.quartz.JobExecutionException; public class MyJob implements Job { public void execute(JobExecutionContext context) throws JobExecutionException { System.out.println("要去数据库扫描啦。。。"); } public static void main(String[] args) throws Exception { // 创建任务 JobDetail jobDetail = JobBuilder.newJob(MyJob.class) .withIdentity("job1", "group1").build(); // 创建触发器 每3秒钟执行一次 Trigger trigger = TriggerBuilder .newTrigger() .withIdentity("trigger1", "group3") .withSchedule( SimpleScheduleBuilder.simpleSchedule() .withIntervalInSeconds(3).repeatForever()) .build(); Scheduler scheduler = new StdSchedulerFactory().getScheduler(); // 将任务及其触发器放入调度器 scheduler.scheduleJob(jobDetail, trigger); // 调度器开始调度任务 scheduler.start(); } }运行代码,可发现每隔3秒,输出如下要去数据库扫描啦。。。优缺点 优点: 简单易行,支持集群操作。缺点:(1)对服务器内存消耗大;(2)存在延迟,比如你每隔3分钟扫描一次,那最坏的延迟时间就是3分钟;(3)假设你的订单有几千万条,每隔几分钟这样扫描一次,数据库损耗极大。(2) JDK的延迟队列思路 该方案是利用 JDK 自带的 DelayQueue 来实现,这是一个无界阻塞队列,该队列只有在延迟期满的时候才能从中获取元素,放入DelayQueue中的对象,是必须实现Delayed接口的。DelayedQueue实现工作流程如下图所示其中poll(): 获取并移除队列的超时元素,没有则返回空;take(): 获取并移除队列的超时元素,如果没有则wait当前线程,直到有元素满足超时条件,返回结果。实现定义一个类OrderDelay实现Delayed,代码如下:package com.rjzheng.delay2; import java.util.concurrent.Delayed; import java.util.concurrent.TimeUnit; public class OrderDelay implements Delayed { private String orderId; private long timeout; OrderDelay(String orderId, long timeout) { this.orderId = orderId; this.timeout = timeout + System.nanoTime(); } public int compareTo(Delayed other) { if (other == this) return 0; OrderDelay t = (OrderDelay) other; long d = (getDelay(TimeUnit.NANOSECONDS) - t .getDelay(TimeUnit.NANOSECONDS)); return (d == 0) ? 0 : ((d < 0) ? -1 : 1); } // 返回距离你自定义的超时时间还有多少 public long getDelay(TimeUnit unit) { return unit.convert(timeout - System.nanoTime(), TimeUnit.NANOSECONDS); } void print() { System.out.println(orderId+"编号的订单要删除啦。。。。"); } }运行的测试Demo为,我们设定延迟时间为3秒。package com.rjzheng.delay2; import java.util.ArrayList; import java.util.List; import java.util.concurrent.DelayQueue; import java.util.concurrent.TimeUnit; public class DelayQueueDemo { public static void main(String[] args) { // TODO Auto-generated method stub List<String> list = new ArrayList<String>(); list.add("00000001"); list.add("00000002"); list.add("00000003"); list.add("00000004"); list.add("00000005"); DelayQueue<OrderDelay> queue = new DelayQueue<OrderDelay>(); long start = System.currentTimeMillis(); for(int i = 0;i<5;i++){ //延迟三秒取出 queue.put(new OrderDelay(list.get(i), TimeUnit.NANOSECONDS.convert(3, TimeUnit.SECONDS))); try { queue.take().print(); System.out.println("After " + (System.currentTimeMillis()-start) + " MilliSeconds"); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } }输出如下:00000001编号的订单要删除啦。。。。 After 3003 MilliSeconds 00000002编号的订单要删除啦。。。。 After 6006 MilliSeconds 00000003编号的订单要删除啦。。。。 After 9006 MilliSeconds 00000004编号的订单要删除啦。。。。 After 12008 MilliSeconds 00000005编号的订单要删除啦。。。。 After 15009 MilliSeconds可以看到都是延迟3秒,订单被删除。优缺点 优点: 效率高,任务触发时间延迟低。缺点:(1) 服务器重启后,数据全部消失,怕宕机;(2) 集群扩展相当麻烦;(3) 因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常;(4) 代码复杂度较高。(3) 时间轮算法思路 先上一张时间轮的图(这图到处都是啦)时间轮算法可以类比于时钟,如上图箭头(指针)按某一个方向按固定频率轮动,每一次跳动称为一个 tick。这样可以看出定时轮由个3个重要的属性参数,ticksPerWheel(一轮的tick数),tickDuration(一个tick的持续时间)以及 timeUnit(时间单位),例如当ticksPerWheel=60,tickDuration=1,timeUnit=秒,这就和现实中的始终的秒针走动完全类似了。如果当前指针指在1上面,我有一个任务需要4秒以后执行,那么这个执行的线程回调或者消息将会被放在5上。那如果需要在20秒之后执行怎么办,由于这个环形结构槽数只到8,如果要20秒,指针需要多转2圈。位置是在2圈之后的5上面(20 % 8 + 1)。实现 我们用Netty的HashedWheelTimer来实现 给Pom加上下面的依赖:<dependency> <groupId>io.netty</groupId> <artifactId>netty-all</artifactId> <version>4.1.24.Final</version> </dependency>测试代码HashedWheelTimerTest,如下所示:package com.rjzheng.delay3; import io.netty.util.HashedWheelTimer; import io.netty.util.Timeout; import io.netty.util.Timer; import io.netty.util.TimerTask; import java.util.concurrent.TimeUnit; public class HashedWheelTimerTest { static class MyTimerTask implements TimerTask{ boolean flag; public MyTimerTask(boolean flag){ this.flag = flag; } public void run(Timeout timeout) throws Exception { // TODO Auto-generated method stub System.out.println("要去数据库删除订单了。。。。"); this.flag =false; } } public static void main(String[] argv) { MyTimerTask timerTask = new MyTimerTask(true); Timer timer = new HashedWheelTimer(); timer.newTimeout(timerTask, 5, TimeUnit.SECONDS); int i = 1; while(timerTask.flag){ try { Thread.sleep(1000); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } System.out.println(i+"秒过去了"); i++; } } }输出如下:1秒过去了 2秒过去了 3秒过去了 4秒过去了 5秒过去了 要去数据库删除订单了。。。。 6秒过去了优缺点 优点: 效率高,任务触发时间延迟时间比delayQueue低,代码复杂度比delayQueue低。缺点:(1) 服务器重启后,数据全部消失,怕宕机;(2) 集群扩展相当麻烦;(3) 因为内存条件限制的原因,比如下单未付款的订单数太多,那么很容易就出现OOM异常。(4) redis缓存思路一 利用 redis 的 zset ,zset是一个有序集合,每一个元素(member)都关联了一个score,通过score排序来取集合中的值。zset常用命令添加元素:ZADD key score member [[score member] [score member] ...]按顺序查询元素:ZRANGE key start stop [WITHSCORES]查询元素score:ZSCORE key member移除元素:ZREM key member [member ...]测试如下: # 添加单个元素 redis> ZADD page_rank 10 google.com (integer) 1 # 添加多个元素 redis> ZADD page_rank 9 baidu.com 8 bing.com (integer) 2 redis> ZRANGE page_rank 0 -1 WITHSCORES 1) "bing.com" 2) "8" 3) "baidu.com" 4) "9" 5) "google.com" 6) "10" # 查询元素的score值 redis> ZSCORE page_rank bing.com "8" # 移除单个元素 redis> ZREM page_rank google.com (integer) 1 redis> ZRANGE page_rank 0 -1 WITHSCORES 1) "bing.com" 2) "8" 3) "baidu.com" 4) "9"那么如何实现呢?我们将订单超时时间戳与订单号分别设置为 score 和 member ,系统扫描第一个元素判断是否超时,具体如下图所示:实现一package com.rjzheng.delay4; import java.util.Calendar; import java.util.Set; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; import redis.clients.jedis.Tuple; public class AppTest { private static final String ADDR = "127.0.0.1"; private static final int PORT = 6379; private static JedisPool jedisPool = new JedisPool(ADDR, PORT); public static Jedis getJedis() { return jedisPool.getResource(); } //生产者,生成5个订单放进去 public void productionDelayMessage(){ for(int i=0;i<5;i++){ //延迟3秒 Calendar cal1 = Calendar.getInstance(); cal1.add(Calendar.SECOND, 3); int second3later = (int) (cal1.getTimeInMillis() / 1000); AppTest.getJedis().zadd("OrderId", second3later,"OID0000001"+i); System.out.println(System.currentTimeMillis()+"ms:redis生成了一个订单任务:订单ID为"+"OID0000001"+i); } } //消费者,取订单 public void consumerDelayMessage(){ Jedis jedis = AppTest.getJedis(); while(true){ Set<Tuple> items = jedis.zrangeWithScores("OrderId", 0, 1); if(items == null || items.isEmpty()){ System.out.println("当前没有等待的任务"); try { Thread.sleep(500); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } continue; } int score = (int) ((Tuple)items.toArray()[0]).getScore(); Calendar cal = Calendar.getInstance(); int nowSecond = (int) (cal.getTimeInMillis() / 1000); if(nowSecond >= score){ String orderId = ((Tuple)items.toArray()[0]).getElement(); jedis.zrem("OrderId", orderId); System.out.println(System.currentTimeMillis() +"ms:redis消费了一个任务:消费的订单OrderId为"+orderId); } } } public static void main(String[] args) { AppTest appTest =new AppTest(); appTest.productionDelayMessage(); appTest.consumerDelayMessage(); } }此时对应输出如下:1525086085261ms:redis生成了一个订单任务:订单ID为OID00000010 1525086085263ms:redis生成了一个订单任务:订单ID为OID00000011 1525086085266ms:redis生成了一个订单任务:订单ID为OID00000012 1525086085268ms:redis生成了一个订单任务:订单ID为OID00000013 1525086085270ms:redis生成了一个订单任务:订单ID为OID00000014 1525086088000ms:redis消费了一个任务:消费的订单OrderId为OID00000010 1525086088001ms:redis消费了一个任务:消费的订单OrderId为OID00000011 1525086088002ms:redis消费了一个任务:消费的订单OrderId为OID00000012 1525086088003ms:redis消费了一个任务:消费的订单OrderId为OID00000013 1525086088004ms:redis消费了一个任务:消费的订单OrderId为OID00000014 当前没有等待的任务 当前没有等待的任务 当前没有等待的任务可以看到,几乎都是3秒之后,消费订单。然而,这一版存在一个致命的硬伤,在高并发条件下,多消费者会取到同一个订单号,我们上测试代码 ThreadTest 。package com.rjzheng.delay4; import java.util.concurrent.CountDownLatch; public class ThreadTest { private static final int threadNum = 10; private static CountDownLatch cdl = new CountDownLatch(threadNum); static class DelayMessage implements Runnable{ public void run() { try { cdl.await(); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } AppTest appTest =new AppTest(); appTest.consumerDelayMessage(); } } public static void main(String[] args) { AppTest appTest =new AppTest(); appTest.productionDelayMessage(); for(int i=0;i<threadNum;i++){ new Thread(new DelayMessage()).start(); cdl.countDown(); } } }输出如下所示:1525087157727ms:redis生成了一个订单任务:订单ID为OID00000010 1525087157734ms:redis生成了一个订单任务:订单ID为OID00000011 1525087157738ms:redis生成了一个订单任务:订单ID为OID00000012 1525087157747ms:redis生成了一个订单任务:订单ID为OID00000013 1525087157753ms:redis生成了一个订单任务:订单ID为OID00000014 1525087160009ms:redis消费了一个任务:消费的订单OrderId为OID00000010 1525087160011ms:redis消费了一个任务:消费的订单OrderId为OID00000010 1525087160012ms:redis消费了一个任务:消费的订单OrderId为OID00000010 1525087160022ms:redis消费了一个任务:消费的订单OrderId为OID00000011 1525087160023ms:redis消费了一个任务:消费的订单OrderId为OID00000011 1525087160029ms:redis消费了一个任务:消费的订单OrderId为OID00000011 1525087160038ms:redis消费了一个任务:消费的订单OrderId为OID00000012 1525087160045ms:redis消费了一个任务:消费的订单OrderId为OID00000012 1525087160048ms:redis消费了一个任务:消费的订单OrderId为OID00000012 1525087160053ms:redis消费了一个任务:消费的订单OrderId为OID00000013 1525087160064ms:redis消费了一个任务:消费的订单OrderId为OID00000013 1525087160065ms:redis消费了一个任务:消费的订单OrderId为OID00000014 1525087160069ms:redis消费了一个任务:消费的订单OrderId为OID00000014 当前没有等待的任务 当前没有等待的任务 当前没有等待的任务 当前没有等待的任务显然,出现了多个线程消费同一个资源的情况。解决方案(1) 用分布式锁,但是用分布式锁,性能下降了,该方案不细说;(2) 对ZREM的返回值进行判断,只有大于0的时候,才消费数据,于是将 consumerDelayMessage() 方法里的。if(nowSecond >= score){ String orderId = ((Tuple)items.toArray()[0]).getElement(); jedis.zrem("OrderId", orderId); System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId); }修改为:if(nowSecond >= score){ String orderId = ((Tuple)items.toArray()[0]).getElement(); Long num = jedis.zrem("OrderId", orderId); if( num != null && num>0){ System.out.println(System.currentTimeMillis()+"ms:redis消费了一个任务:消费的订单OrderId为"+orderId); } }在这种修改后,重新运行ThreadTest类,发现输出正常了。思路二 该方案使用 redis 的 Keyspace Notifications ,中文翻译就是键空间机制,就是利用该机制可以在key失效之后,提供一个回调,实际上是redis会给客户端发送一个消息。是需要 redis版本2.8以上 。实现二 在 redis.conf 中,加入一条配置:notify-keyspace-events Ex运行代码如下:package com.rjzheng.delay5; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; import redis.clients.jedis.JedisPubSub; public class RedisTest { private static final String ADDR = "127.0.0.1"; private static final int PORT = 6379; private static JedisPool jedis = new JedisPool(ADDR, PORT); private static RedisSub sub = new RedisSub(); public static void init() { new Thread(new Runnable() { public void run() { jedis.getResource().subscribe(sub, "__keyevent@0__:expired"); } }).start(); } public static void main(String[] args) throws InterruptedException { init(); for(int i =0;i<10;i++){ String orderId = "OID000000"+i; jedis.getResource().setex(orderId, 3, orderId); System.out.println(System.currentTimeMillis()+"ms:"+orderId+"订单生成"); } } static class RedisSub extends JedisPubSub { @Override public void onMessage(String channel, String message) { System.out.println(System.currentTimeMillis()+"ms:"+message+"订单取消"); } } }输出如下:1525096202813ms:OID0000000订单生成 1525096202818ms:OID0000001订单生成 1525096202824ms:OID0000002订单生成 1525096202826ms:OID0000003订单生成 1525096202830ms:OID0000004订单生成 1525096202834ms:OID0000005订单生成 1525096202839ms:OID0000006订单生成 1525096205819ms:OID0000000订单取消 1525096205920ms:OID0000005订单取消 1525096205920ms:OID0000004订单取消 1525096205920ms:OID0000001订单取消 1525096205920ms:OID0000003订单取消 1525096205920ms:OID0000006订单取消 1525096205920ms:OID0000002订单取消可以明显看到3秒过后,订单取消了。ps: redis的pub/sub 机制存在一个硬伤,官网内容如下:原: Because Redis Pub/Sub is fire and forget currently there is no way to use this feature if your application demands reliable notification of events, that is, if your Pub/Sub client disconnects, and reconnects later, all the events delivered during the time the client was disconnected are lost.翻: Redis的发布/订阅目前是即发即弃(fire and forget)模式的,因此无法实现事件的可靠通知。也就是说,如果发布/订阅的客户端断链之后又重连,则在客户端断链期间的所有事件都丢失了。因此,方案二不是太推荐。当然,如果你对可靠性要求不高,可以使用。优缺点 优点:(1) 由于使用Redis作为消息通道,消息都存储在Redis中。如果发送程序或者任务处理程序挂了,重启之后,还有重新处理数据的可能性;(2) 做集群扩展相当方便;(3) 时间准确度高。缺点: (1) 需要额外进行redis维护。(5) 使用消息队列我们可以采用 RabbitMQ 的延时队列。RabbitMQ 具有以下两个特性,可以实现延迟队列:(1)RabbitMQ可以针对Queue和Message设置 x-message-tt,来控制消息的生存时间,如果超时,则消息变为dead letter(2)lRabbitMQ的Queue可以配置x-dead-letter-exchange 和x-dead-letter-routing-key(可选)两个参数,用来控制队列内出现了deadletter,则按照这两个参数重新路由。结合以上两个特性,就可以模拟出延迟消息的功能,具体的,我改天再写一篇文章,这里再讲下去,篇幅太长。优缺点优点: 高效,可以利用rabbitmq的分布式特性轻易的进行横向扩展,消息支持持久化增加了可靠性。缺点:本身的易用度要依赖于rabbitMq的运维。因为要引用rabbitMq,所以复杂度和成本变高。总结本文总结了目前互联网中,绝大部分的延时任务的实现方案。希望大家在工作中能够有所收获。
2023年10月21日
8 阅读
0 评论
0 点赞
2023-09-25
《Redis学习笔记》
史上最全的 Redis 知识总结!Redis作为稳居世界排名第一的KV内存数据库,同时也是最受欢迎的分布式缓存中间件,是应对高并发,大流量,低延迟业务场景的不二选择。面试必问!今天给大家分享的是某大厂的一位大佬整理的 《Redis学习笔记》 ,图文并茂,特别详细,基本上涵盖了你需要的所有 Redis 所有知识点。建议大家至少看 3 遍。学习资料Redis学习笔记.pdf
2023年09月25日
12 阅读
0 评论
0 点赞
2023-07-24
SpringBoot 项目使用 Redis 对用户 IP 进行接口限流
一、思路使用接口限流的主要目的在于提高系统的稳定性,防止接口被恶意打击(短时间内大量请求)。比如要求某接口在1分钟内请求次数不超过1000次,那么应该如何设计代码呢?下面讲两种思路,如果想看代码可直接翻到后面的代码部分。1.1 固定时间段(旧思路)1.1.1 思路描述 该方案的思路是:使用Redis记录固定时间段内某用户IP访问某接口的次数,其中:Redis的key:用户IP + 接口方法名Redis的value:当前接口访问次数。当用户在近期内第一次访问该接口时,向Redis中设置一个包含了用户IP和接口方法名的key,value的值初始化为1(表示第一次访问当前接口)。同时,设置该key的过期时间(比如为60秒)。之后,只要这个key还未过期,用户每次访问该接口都会导致value自增1次。用户每次访问接口前,先从Redis中拿到当前接口访问次数,如果发现访问次数大于规定的次数(如超过1000次),则向用户返回接口访问失败的标识。1.1.2 思路缺陷 该方案的缺点在于,限流时间段是固定的。比如要求某接口在1分钟内请求次数不超过1000次,观察以下流程:可以发现,00:59和01:01之间仅仅间隔了2秒,但接口却被访问了1000+999=1999次,是限流次数(1000次)的2倍!所以在该方案中,限流次数的设置可能不起作用,仍然可能在短时间内造成大量访问。1.2 滑动窗口(新思路)1.2.1 思路描述 为了避免出现方案1中由于键过期导致的短期访问量增大的情况,我们可以改变一下思路,也就是把固定的时间段改成动态的:假设某个接口在10秒内只允许访问5次。用户每次访问接口时,记录当前用户访问的时间点(时间戳),并计算前10秒内用户访问该接口的总次数。如果总次数大于限流次数,则不允许用户访问该接口。这样就能保证在任意时刻用户的访问次数不会超过1000次。如下图,假设用户在0:19时间点访问接口,经检查其前10秒内访问次数为5次,则允许本次访问。假设用户0:20时间点访问接口,经检查其前10秒内访问次数为6次(超出限流次数5次),则不允许本次访问。1.2.2 Redis部分的实现1)选用何种 Redis 数据结构首先是需要确定使用哪个Redis数据结构。用户每次访问时,需要用一个key记录用户访问的时间点,而且还需要利用这些时间点进行范围检查。为何选择 zSet 数据结构为了能够实现范围检查,可以考虑使用Redis中的zSet有序集合。添加一个zSet元素的命令如下:ZADD [key] [score] [member]它有一个关键的属性score,通过它可以记录当前member的优先级。于是我们可以把score设置成用户访问接口的时间戳,以便于通过score进行范围检查。key则记录用户IP和接口方法名,至于member设置成什么没有影响,一个member记录了用户访问接口的时间点。因此member也可以设置成时间戳。3)zSet 如何进行范围检查(检查前几秒的访问次数)思路是,把特定时间间隔之前的member都删掉,留下的member就是时间间隔之内的总访问次数。然后统计当前key中的member有多少个即可。① 把特定时间间隔之前的member都删掉。zSet有如下命令,用于删除score范围在[min~max]之间的member:Zremrangebyscore [key] [min] [max]假设限流时间设置为5秒,当前用户访问接口时,获取当前系统时间戳为currentTimeMill,那么删除的score范围可以设置为:min = 0 max = currentTimeMill - 5 * 1000相当于把5秒之前的所有member都删除了,只留下前5秒内的key。② 统计特定key中已存在的member有多少个。zSet有如下命令,用于统计某个key的member总数: ZCARD [key]统计的key的member总数,就是当前接口已经访问的次数。如果该数目大于限流次数,则说明当前的访问应被限流。二、代码实现主要是使用注解 + AOP的形式实现。2.1 固定时间段思路使用了lua脚本。参考:https://blog.csdn.net/qq_43641418/article/details/1277644622.1.1 限流注解@Retention(RetentionPolicy.RUNTIME) @Target(ElementType.METHOD) public @interface RateLimiter { /** * 限流时间,单位秒 */ int time() default 5; /** * 限流次数 */ int count() default 10; }2.1.2 定义lua脚本 在 resources/lua 下新建 limit.lua :-- 获取redis键 local key = KEYS[1] -- 获取第一个参数(次数) local count = tonumber(ARGV[1]) -- 获取第二个参数(时间) local time = tonumber(ARGV[2]) -- 获取当前流量 local current = redis.call('get', key); -- 如果current值存在,且值大于规定的次数,则拒绝放行(直接返回当前流量) if current and tonumber(current) > count then return tonumber(current) end -- 如果值小于规定次数,或值不存在,则允许放行,当前流量数+1 (值不存在情况下,可以自增变为1) current = redis.call('incr', key); -- 如果是第一次进来,那么开始设置键的过期时间。 if tonumber(current) == 1 then redis.call('expire', key, time); end -- 返回当前流量 return tonumber(current)2.1.3 注入Lua执行脚本 关键代码是 limitScript() 方法@Configuration public class RedisConfig { @Bean public RedisTemplate<Object, Object> redisTemplate(RedisConnectionFactory connectionFactory) { RedisTemplate<Object, Object> redisTemplate = new RedisTemplate<>(); redisTemplate.setConnectionFactory(connectionFactory); // 使用Jackson2JsonRedisSerialize 替换默认序列化(默认采用的是JDK序列化) Jackson2JsonRedisSerializer<Object> jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer<>(Object.class); ObjectMapper om = new ObjectMapper(); om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY); om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL); jackson2JsonRedisSerializer.setObjectMapper(om); redisTemplate.setKeySerializer(jackson2JsonRedisSerializer); redisTemplate.setValueSerializer(jackson2JsonRedisSerializer); redisTemplate.setHashKeySerializer(jackson2JsonRedisSerializer); redisTemplate.setHashValueSerializer(jackson2JsonRedisSerializer); return redisTemplate; } /** * 解析lua脚本的bean */ @Bean("limitScript") public DefaultRedisScript<Long> limitScript() { DefaultRedisScript<Long> redisScript = new DefaultRedisScript<>(); redisScript.setScriptSource(new ResourceScriptSource(new ClassPathResource("lua/limit.lua"))); redisScript.setResultType(Long.class); return redisScript; } }2.1.3 定义Aop切面类@Slf4j @Aspect @Component public class RateLimiterAspect { @Autowired private RedisTemplate redisTemplate; @Autowired private RedisScript<Long> limitScript; @Before("@annotation(rateLimiter)") public void doBefore(JoinPoint point, RateLimiter rateLimiter) throws Throwable { int time = rateLimiter.time(); int count = rateLimiter.count(); String combineKey = getCombineKey(rateLimiter.type(), point); List<String> keys = Collections.singletonList(combineKey); try { Long number = (Long) redisTemplate.execute(limitScript, keys, count, time); // 当前流量number已超过限制,则抛出异常 if (number == null || number.intValue() > count) { throw new RuntimeException("访问过于频繁,请稍后再试"); } log.info("[limit] 限制请求数'{}',当前请求数'{}',缓存key'{}'", count, number.intValue(), combineKey); } catch (Exception ex) { ex.printStackTrace(); throw new RuntimeException("服务器限流异常,请稍候再试"); } } /** * 把用户IP和接口方法名拼接成 redis 的 key * @param point 切入点 * @return 组合key */ private String getCombineKey(JoinPoint point) { StringBuilder sb = new StringBuilder("rate_limit:"); ServletRequestAttributes attributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes(); HttpServletRequest request = attributes.getRequest(); sb.append( Utils.getIpAddress(request) ); MethodSignature signature = (MethodSignature) point.getSignature(); Method method = signature.getMethod(); Class<?> targetClass = method.getDeclaringClass(); // keyPrefix + "-" + class + "-" + method return sb.append("-").append( targetClass.getName() ) .append("-").append(method.getName()).toString(); } }2.2 滑动窗口思路2.2.1 限流注解@Retention(RetentionPolicy.RUNTIME) @Target(ElementType.METHOD) public @interface RateLimiter { /** * 限流时间,单位秒 */ int time() default 5; /** * 限流次数 */ int count() default 10; }2.2.2 定义Aop切面类@Slf4j @Aspect @Component public class RateLimiterAspect { @Autowired private RedisTemplate redisTemplate; /** * 实现限流(新思路) * @param point * @param rateLimiter * @throws Throwable */ @SuppressWarnings("unchecked") @Before("@annotation(rateLimiter)") public void doBefore(JoinPoint point, RateLimiter rateLimiter) throws Throwable { // 在 {time} 秒内仅允许访问 {count} 次。 int time = rateLimiter.time(); int count = rateLimiter.count(); // 根据用户IP(可选)和接口方法,构造key String combineKey = getCombineKey(rateLimiter.type(), point); // 限流逻辑实现 ZSetOperations zSetOperations = redisTemplate.opsForZSet(); // 记录本次访问的时间结点 long currentMs = System.currentTimeMillis(); zSetOperations.add(combineKey, currentMs, currentMs); // 这一步是为了防止member一直存在于内存中 redisTemplate.expire(combineKey, time, TimeUnit.SECONDS); // 移除{time}秒之前的访问记录(滑动窗口思想) zSetOperations.removeRangeByScore(combineKey, 0, currentMs - time * 1000); // 获得当前窗口内的访问记录数 Long currCount = zSetOperations.zCard(combineKey); // 限流判断 if (currCount > count) { log.error("[limit] 限制请求数'{}',当前请求数'{}',缓存key'{}'", count, currCount, combineKey); throw new RuntimeException("访问过于频繁,请稍后再试!"); } } /** * 把用户IP和接口方法名拼接成 redis 的 key * @param point 切入点 * @return 组合key */ private String getCombineKey(JoinPoint point) { StringBuilder sb = new StringBuilder("rate_limit:"); ServletRequestAttributes attributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes(); HttpServletRequest request = attributes.getRequest(); sb.append( Utils.getIpAddress(request) ); MethodSignature signature = (MethodSignature) point.getSignature(); Method method = signature.getMethod(); Class<?> targetClass = method.getDeclaringClass(); // keyPrefix + "-" + class + "-" + method return sb.append("-").append( targetClass.getName() ) .append("-").append(method.getName()).toString(); } }
2023年07月24日
15 阅读
0 评论
0 点赞
2023-03-11
Spring Boot + Redis 解决重复提交问题,一定用的到
前言在实际的开发项目中,一个对外暴露的接口往往会面临很多次请求,我们来解释一下幂等的概念:任意多次执行所产生的影响均与一次执行的影响相同。按照这个含义,最终的含义就是 对数据库的影响只能是一次性的,不能重复处理。如何保证其幂等性,通常有以下手段:数据库建立唯一性索引,可以保证最终插入数据库的只有一条数据token机制,每次接口请求前先获取一个token,然后再下次请求的时候在请求的header体中加上这个token,后台进行验证,如果验证通过删除token,下次请求再次判断token悲观锁或者乐观锁,悲观锁可以保证每次for update的时候其他sql无法update数据(在数据库引擎是innodb的时候,select的条件必须是唯一索引,防止锁全表)先查询后判断,首先通过查询数据库是否存在数据,如果存在证明已经请求过了,直接拒绝该请求,如果没有存在,就证明是第一次进来,直接放行。Redis实现自动幂等的原理图:搭建Redis的服务Api1、首先是搭建 Redis 服务器。2、引入 springboot 中到的 redis 的 stater ,或者 Spring 封装的 jedis 也可以,后面主要用到的 api 就是它的 set 方法和 exists 方法,这里我们使用 springboot 的封装好的 redisTemplate/** * redis工具类 */ @Component public class RedisService { @Autowired private RedisTemplate redisTemplate; /** * 写入缓存 * @param key * @param value * @return */ public boolean set(final String key, Object value) { boolean result = false; try { ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue(); operations.set(key, value); result = true; } catch (Exception e) { e.printStackTrace(); } return result; } /** * 写入缓存设置时效时间 * @param key * @param value * @return */ public boolean setEx(final String key, Object value, Long expireTime) { boolean result = false; try { ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue(); operations.set(key, value); redisTemplate.expire(key, expireTime, TimeUnit.SECONDS); result = true; } catch (Exception e) { e.printStackTrace(); } return result; } /** * 判断缓存中是否有对应的value * @param key * @return */ public boolean exists(final String key) { return redisTemplate.hasKey(key); } /** * 读取缓存 * @param key * @return */ public Object get(final String key) { Object result = null; ValueOperations<Serializable, Object> operations = redisTemplate.opsForValue(); result = operations.get(key); return result; } /** * 删除对应的value * @param key */ public boolean remove(final String key) { if (exists(key)) { Boolean delete = redisTemplate.delete(key); return delete; } return false; } }自定义注解AutoIdempotent自定义一个注解,定义此注解的主要目的是把它添加在需要实现幂等的方法上,凡是某个方法注解了它,都会实现自动幂等。后台利用反射如果扫描到这个注解,就会处理这个方法实现自动幂等,使用元注解 ElementType.METHOD 表示它只能放在方法上, etentionPolicy.RUNTIME 表示它在运行时@Target({ElementType.METHOD}) @Retention(RetentionPolicy.RUNTIME) public @interface AutoIdempotent { }Token创建和检验1、Token服务接口 我们新建一个接口,创建 token 服务,里面主要是两个方法,一个用来创建 token ,一个用来验证 token 。创建 token 主要产生的是一个字符串,检验 token 的话主要是传达 request 对象,为什么要传 request 对象呢?主要作用就是获取 header 里面的 token ,然后检验,通过抛出的 Exception 来获取具体的报错信息返回给前端public interface TokenService { /** * 创建token * @return */ public String createToken(); /** * 检验token * @param request * @return */ public boolean checkToken(HttpServletRequest request) throws Exception; }2、Token的服务实现类 token 引用了 redis 服务,创建 token 采用随机算法工具类生成随机 uuid 字符串,然后放入到 redis 中(为了防止数据的冗余保留,这里设置过期时间为10000秒,具体可视业务而定),如果放入成功,最后返回这个 token 值。 checkToken 方法就是从 header 中获取 token 到值(如果 header 中拿不到,就从 paramter 中获取),如若不存在,直接抛出异常。这个异常信息可以被拦截器捕捉到,然后返回给前端。@Service public class TokenServiceImpl implements TokenService { @Autowired private RedisService redisService; /** * 创建token * * @return */ @Override public String createToken() { String str = RandomUtil.randomUUID(); StrBuilder token = new StrBuilder(); try { token.append(Constant.Redis.TOKEN_PREFIX).append(str); redisService.setEx(token.toString(), token.toString(),10000L); boolean notEmpty = StrUtil.isNotEmpty(token.toString()); if (notEmpty) { return token.toString(); } }catch (Exception ex){ ex.printStackTrace(); } return null; } /** * 检验token * * @param request * @return */ @Override public boolean checkToken(HttpServletRequest request) throws Exception { String token = request.getHeader(Constant.TOKEN_NAME); if (StrUtil.isBlank(token)) {// header中不存在token token = request.getParameter(Constant.TOKEN_NAME); if (StrUtil.isBlank(token)) {// parameter中也不存在token throw new ServiceException(Constant.ResponseCode.ILLEGAL_ARGUMENT, 100); } } if (!redisService.exists(token)) { throw new ServiceException(Constant.ResponseCode.REPETITIVE_OPERATION, 200); } boolean remove = redisService.remove(token); if (!remove) { throw new ServiceException(Constant.ResponseCode.REPETITIVE_OPERATION, 200); } return true; } }拦截器的配置1、Web配置类 实现WebMvcConfigurerAdapter,主要作用就是添加autoIdempotentInterceptor到配置类中,这样我们到拦截器才能生效,注意使用@Configuration注解,这样在容器启动是时候就可以添加进入context中@Configuration public class WebConfiguration extends WebMvcConfigurerAdapter { @Resource private AutoIdempotentInterceptor autoIdempotentInterceptor; /** * 添加拦截器 * @param registry */ @Override public void addInterceptors(InterceptorRegistry registry) { registry.addInterceptor(autoIdempotentInterceptor); super.addInterceptors(registry); } }2、拦截处理器 主要的功能是拦截扫描到 AutoIdempotent 到注解到方法,然后调用 tokenService 的 checkToken() 方法校验token是否正确,如果捕捉到异常就将异常信息渲染成json返回给前端/** * 拦截器 */ @Component public class AutoIdempotentInterceptor implements HandlerInterceptor { @Autowired private TokenService tokenService; /** * 预处理 * * @param request * @param response * @param handler * @return * @throws Exception */ @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { if (!(handler instanceof HandlerMethod)) { return true; } HandlerMethod handlerMethod = (HandlerMethod) handler; Method method = handlerMethod.getMethod(); //被ApiIdempotment标记的扫描 AutoIdempotent methodAnnotation = method.getAnnotation(AutoIdempotent.class); if (methodAnnotation != null) { try { return tokenService.checkToken(request);// 幂等性校验, 校验通过则放行, 校验失败则抛出异常, 并通过统一异常处理返回友好提示 }catch (Exception ex){ ResultVo failedResult = ResultVo.getFailedResult(101, ex.getMessage()); writeReturnJson(response, JSONUtil.toJsonStr(failedResult)); throw ex; } } //必须返回true,否则会被拦截一切请求 return true; } @Override public void postHandle(HttpServletRequest request, HttpServletResponse response, Object handler, ModelAndView modelAndView) throws Exception { } @Override public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception { } /** * 返回的json值 * @param response * @param json * @throws Exception */ private void writeReturnJson(HttpServletResponse response, String json) throws Exception{ PrintWriter writer = null; response.setCharacterEncoding("UTF-8"); response.setContentType("text/html; charset=utf-8"); try { writer = response.getWriter(); writer.print(json); } catch (IOException e) { } finally { if (writer != null) writer.close(); } } }测试用例1、模拟业务请求类 首先我们需要通过 /get/token 路径通过 getToken() 方法去获取具体的 token ,然后我们调用 testIdempotence 方法,这个方法上面注解了 @AutoIdempotent ,拦截器会拦截所有的请求,当判断到处理的方法上面有该注解的时候,就会调用 TokenService 中的 checkToken() 方法,如果捕获到异常会将异常抛出调用者,下面我们来模拟请求一下:@RestController public class BusinessController { @Resource private TokenService tokenService; @Resource private TestService testService; @PostMapping("/get/token") public String getToken(){ String token = tokenService.createToken(); if (StrUtil.isNotEmpty(token)) { ResultVo resultVo = new ResultVo(); resultVo.setCode(Constant.code_success); resultVo.setMessage(Constant.SUCCESS); resultVo.setData(token); return JSONUtil.toJsonStr(resultVo); } return StrUtil.EMPTY; } @AutoIdempotent @PostMapping("/test/Idempotence") public String testIdempotence() { String businessResult = testService.testIdempotence(); if (StrUtil.isNotEmpty(businessResult)) { ResultVo successResult = ResultVo.getSuccessResult(businessResult); return JSONUtil.toJsonStr(successResult); } return StrUtil.EMPTY; } }2、使用postman请求 首先访问get/token路径获取到具体到token:利用获取到到token,然后放到具体请求到header中,可以看到第一次请求成功,接着我们请求第二次:第二次请求,返回到是重复性操作,可见重复性验证通过,再多次请求到时候我们只让其第一次成功,第二次就是失败:总结本文介绍了使用 springboot 和 拦截器 、 redis 来优雅的实现接口幂等,对于幂等在实际的开发过程中是十分重要的,因为一个接口可能会被无数的客户端调用,如何保证其不影响后台的业务处理,如何保证其只影响数据一次是非常重要的,它可以防止产生脏数据或者乱数据,也可以减少并发量,实乃十分有益的一件事。而传统的做法是每次判断数据,这种做法不够智能化和自动化,比较麻烦。而今天的这种自动化处理也可以提升程序的伸缩性。
2023年03月11日
13 阅读
0 评论
0 点赞
2023-02-16
Docker部署 Mysql、redis、Rabbitmq、Vue、Java 项目
Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux 或 Windows 机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口。本文主要讲解如何在Linux环境下使用 Docker 部署前后端分离项目,其中涉及到使用 Docker 安装本人项目相关的一些环境 ,例如mysql、rabbitmq、redis,基于CenterOS7.0。Docker 环境安装1.安装 Docker 客户端# step 1: 安装必要的一些系统工具 sudo yum install -y yum-utils device-mapper-persistent-data lvm2 # Step 2: 添加软件源信息 sudo yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo # Step 3: 更新并安装 Docker-CE sudo yum makecache fast sudo yum -y install docker-ce # Step 4: 开启Docker服务 sudo service docker start2.配置镜像加速器sudo mkdir -p /etc/docker sudo tee /etc/docker/daemon.json <<-'EOF' { "registry-mirrors": ["https://sq2b0kv9.mirror.aliyuncs.com"] } EOF sudo systemctl daemon-reload sudo systemctl restart docker安装 PortainerPortainer 是一个轻量级 Web 端的 Docker 管理 UI,Portainer 够轻松地管理不同的 Docker 环境(Docker 主机或集群)。Portainer 的部署和使用十分简单。Portainer 可以部署为 Linux 容器或 Windows 本机容器,也支持其他平台。Portainer 允许您管理所有 Docker 资源(容器、映像、卷、网络等)!它与独立的 Docker 引擎和 Docker 集群模式兼容。1.安装# 拉取官方镜像 docker pull portainer/portainer # 运行镜像到容器 docker run -d -p 9000:9000\ --restart=always\ -v /var/run/docker.sock:/var/run/docker.sock\ -m 20M --oom-kill-disable --memory-swap=-1\ --name portainer\ portainer/portainer2.访问页面访问地址:http://localhost:9000,第一次打开需要设置用户名、密码,docker 模式我一般选择 Local 本机模式。通过此工具我们可以更加简便的对镜像和容器进行操作和管理。登录页 面板页 安装 mysql# docker search mysql 可通过此命令查看可用版本 # 拉取mysql镜像,默认会拉取最新版本,我这里加上版本号 docker pull mysql:8.0.0 # 查看镜像是否拉取成功 docker images # 在/home/docker/mysql目录下创建mysql挂载目录 mkdir {data,logs,conf} # 运行容器 docker run -d -p 3306:3306 -v /home/docker/mysql/my.cnf:/etc/mysql/conf.d/mysqld.cnf -v /home/docker/mysql/data:/var/lib/mysql -v /home/docker/mysql/logs:/var/log/mysql -e MYSQL_ROOT_PASSWORD=12345 --name mysql_test mysql:8.0.0说明:--name:容器名-e:配置信息,此处配置 mysql 的 root 用户登陆密码-d:后台运行容器,保证在退出终端后容器继续运行-p:端口映射,此处映射 主机 3306 端口 到 容器的 3306 端口-v:挂载目录此处需要注意不要直接挂载容器中的 mysql 配置文件目录,可能会将容器内的配置文件目录清空。个人建议将容器中的 my.cnf 文件复制出来进行选择性的修改,再挂载 mysql.cnf 文件即可。docker cp :用于容器与主机之间的数据拷贝。# 语法 docker cp [OPTIONS] CONTAINER:SRC_PATH DEST_PATH|- # 实例 docker cp 96f7f14e99ab:/etc/mysql/conf.d/mysqld.cnf /home/docker/mysql/my.cnf安装 redis因为 redis 默认配置只能够本地连接,不能进行远程访问,使用 Redis 客户端工具连接都会报错,因此需要手动挂载 redis 配置文件。# /home/docker/redis目录下新增挂载文件夹 mkdir {data,conf} # 下载最新版本的Redis镜像 docker pull redis # 新增redis配置文件 cd /home/docker/redis/conf touch redis.conf vim redis.conf添加以下内容#bind 127.0.0.1 protected-mode no appendonly yes requirepass 123456说明:bind 127.0.0.1 ,注释掉这部分,这是限制 redis 只能本地访问protected-mode:默认 yes,开启保护模式,限制为本地访问appendonly:redis 持久化(可选)requirepass:设置访问密码为 123456运行容器docker run --name myredis -p 6379:6379 -v /home/docker/redis/data:/data -v /home/docker/redis/conf/redis.conf:/etc/redis/redis.conf -d redis redis-server /etc/redis/redis.conf说明:--name:容器名称-p :表示将服务器的 6379(冒号前的 6379)端口映射到 docker 的 6379(冒号后的 6379)端口-d :表示以后台服务的形式运行 redis-v :挂载宿主机目录redis redis-server /etc/redis/redis.conf:表示运行 redis 服务器程序,并且指定运行时的配置文件经过以上步骤,便可以通过 redis 客户端工具进行连接,如果连接不上,检查安全组和服务器防火墙端口是否开放安装 rabbitmq# 拉取带图形化管理界面的镜像 docker pull rabbitmq:3.7.7-management # 根据下载的镜像创建和启动容器 docker run -d --name rabbitmq3.7.7 -p 5672:5672 -p 15672:15672 -v `pwd`/data:/var/lib/rabbitmq --hostname myRabbit -e RABBITMQ_DEFAULT_VHOST=my_vhost -e RABBITMQ_DEFAULT_USER=admin -e RABBITMQ_DEFAULT_PASS=admin df80af9ca0c9说明:-d:后台运行容器;--name:指定容器名;-p:指定服务运行的端口(5672:应用访问端口;15672:控制台 Web 端口号);-v:映射目录或文件;--hostname :主机名(RabbitMQ 的一个重要注意事项是它根据所谓的 “节点名称” 存储数据,默认为主机名);-e:指定环境变量;(RABBITMQ_DEFAULT_VHOST:默认虚拟机名;RABBITMQ_DEFAULT_USER:默认的用户名;RABBITMQ_DEFAULT_PASS:默认用户名的密码)Rabbitmq 访问地址:http://localhost:15672 至此,基本的运行环境都安装完毕,下面就是关键的打包步骤了。Vue 前端项目打包将 dist 下的所有文件目录拷贝到 SpringBoot 后端项目的 resources\static 目录下,static 目录需要新建。如果你的项目中用到了 shiro 或者 spring security 等安全框架,需要对静态资源放行。以上配置完成后,先在本地运行,再用 maven 进行打包。将 jar 包上传到服务器后,就要开始制作自己的镜像了,首先在与 jar 包同目录下新建 Dockerfile 文件。# 新建Dockerfile文件 touch Dockerfile # 编写Dockerfile文件 vim Dockerfile加入以下内容# Docker image for springboot file run # VERSION 0.0.1 FROM java:8 # VOLUME 指定了临时文件目录为/tmp。 # 其效果是在主机 /var/lib/docker 目录下创建了一个临时文件,并链接到容器的/tmp VOLUME /tmp # 将jar包添加到容器中并更名为app.jar ADD demo-01.jar app.jar # 运行jar包 RUN bash -c 'touch /app.jar' ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./urandom","-jar","/app.jar"]执行 docker build -t [镜像名称] . ,至此镜像文件就制作完成了。docker images查看镜像是否存在。最后一步,创建并启动容器,docker run --name [容器名称] -d -p 80:8080 [镜像名]。
2023年02月16日
33 阅读
0 评论
0 点赞
2023-02-10
Windows下搭建Redis集群的方法步骤
Windows下搭建Redis集群的方法步骤本文主要介绍了Windows下搭建Redis集群的方法步骤,文中通过示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下目录Redis集群:在Windows系统下搭建Redis集群:1.下载并安装Redis2.下载并安装ruby3.创建Redis集群Redis集群:如果部署到多台电脑,就跟普通的集群一样;因为Redis是单线程处理的,多核CPU也只能使用一个核,所以部署在同一台电脑上,通过运行多个Redis实例组成集群,然后能提高CPU的利用率。在Windows系统下搭建Redis集群:需要4个部件:Redis、Ruby语言运行环境、Redis的Ruby驱动redis-xxxx.gem、创建Redis集群的工具redis-trib.rb安装Redis,并运行3个实例(Redis集群需要至少3个以上节点,低于3个无法创建);使用redis-trib.rb工具来创建Redis集群,由于该文件是用ruby语言写的,所以需要安装Ruby开发环境,以及驱动redis-xxxx.gem1.下载并安装Redis其GitHub路径如下:https://github.com/MSOpenTech/redis/releases/Redis提供msi和zip格式的下载文件,这里下载zip格式 3.0.504版本将下载到的Redis-x64-3.0.504.zip解压即可,为了方便使用,建议放在盘符根目录下,并修改目录名为Redis,如:C:\Redis 或者D:\Redis 通过配置文件来启动3个不同的Redis实例,由于Redis默认端口为6379,所以这里使用了6380、6381、6382来运行3个Redis实例。注意:为了避免不必要的错误,配置文件尽量保存为utf8格式,并且不要包含注释;配置文件中以下两种保存日志的方式(保存在文件中、保存到System Log中)请根据需求选择其中一种即可:loglevel notice #日志的记录级别,notice是适合生产环境的 logfile "D:/Redis/Logs/redis6380_log.txt" #指定log的保持路径,默认是创建在Redis安装目录下,如果有子目录需要手动创建,如此处的Logs目录 syslog-enabled yes #是否使用系统日志 syslog-ident redis6380 #在系统日志的标识名这里使用了保存在文件中的方式,所以先在Redis目录D:/Redis下新建Logs文件夹[/code]redis.6380.conf 内容如下:port 6380 loglevel notice logfile "D:/Redis/Logs/redis6380_log.txt" appendonly yes appendfilename "appendonly.6380.aof" cluster-enabled yes cluster-config-file nodes.6380.conf cluster-node-timeout 15000 cluster-slave-validity-factor 10 cluster-migration-barrier 1 cluster-require-full-coverage yesredis.6381.conf 内容如下:port 6381 loglevel notice logfile "D:/Redis/Logs/redis6381_log.txt" appendonly yes appendfilename "appendonly.6381.aof" cluster-enabled yes cluster-config-file nodes.6381.conf cluster-node-timeout 15000 cluster-slave-validity-factor 10 cluster-migration-barrier 1 cluster-require-full-coverage yesredis.6382.conf 内容如下:port 6382 loglevel notice logfile "D:/Redis/Logs/redis6382_log.txt" appendonly yes appendfilename "appendonly.6382.aof" cluster-enabled yes cluster-config-file nodes.6382.conf cluster-node-timeout 15000 cluster-slave-validity-factor 10 cluster-migration-barrier 1 cluster-require-full-coverage yes配置内容的解释如下:port 6380 #端口号 loglevel notice #日志的记录级别,notice是适合生产环境的 logfile "Logs/redis6380_log.txt" #指定log的保持路径,默认是创建在Redis安装目录下,如果有子目录需要手动创建,如此处的Logs目录 syslog-enabled yes #是否使用系统日志 syslog-ident redis6380 #在系统日志的标识名 appendonly yes #数据的保存为aof格式 appendfilename "appendonly.6380.aof" #数据保存文件 cluster-enabled yes #是否开启集群 cluster-config-file nodes.6380.conf cluster-node-timeout 15000 cluster-slave-validity-factor 10 cluster-migration-barrier 1 cluster-require-full-coverage yes将上述配置文件保存到Redis目录下,并使用这些配置文件安装3个redis服务,命令如下:注意:redis.6380.conf等配置文件最好使用完整路径,避免重启Redis集群出现问题,博主的安装目录为D:/RedisD:/Redis/redis-server.exe --service-install D:/Redis/redis.6380.conf --service-name redis6380 D:/Redis/redis-server.exe --service-install D:/Redis/redis.6381.conf --service-name redis6381 D:/Redis/redis-server.exe --service-install D:/Redis/redis.6382.conf --service-name redis6382启动这3个服务,命令如下:D:/Redis/redis-server.exe --service-start --service-name Redis6380 D:/Redis/redis-server.exe --service-start --service-name Redis6381 D:/Redis/redis-server.exe --service-start --service-name Redis6382执行结果:2.下载并安装ruby2.1. 下载路径如下:http://dl.bintray.com/oneclick/rubyinstaller/rubyinstaller-2.2.4-x64.exe下载后,双击安装即可,同样,为了操作方便,也是建议安装在盘符根目录下,如: C:\Ruby22-x64 ,安装时这里选中后两个选项,意思是将ruby添加到系统的环境变量中,在cmd命令中能直接使用ruby的命令2.2.下载ruby环境下Redis的驱动,考虑到兼容性,这里下载的是3.2.2版本https://rubygems.org/gems/redis/versions/3.2.2注意:下载在页面右下角相关连接一项中安装该驱动,命令如下:gem install --local path_to_gem/filename.gem实际操作如下:2.3.下载Redis官方提供的创建Redis集群的ruby脚本文件redis-trib.rb,路径如下:https://raw.githubusercontent.com/MSOpenTech/redis/3.0/src/redis-trib.rb打开该链接如果没有下载,而是打开一个页面,那么将该页面保存为redis-trib.rb建议保存到Redis的目录下。注意:因为redis-trib.rb是ruby代码,必须用ruby来打开,若redis-trib.rb无法识别,需要手动选择该文件的打开方式:**选择ruby为的打开方式后,redis-trib.rb的logo都会发生改变,如下图:3.创建Redis集群CMD下切换到Redis目录,使用redis-trib.rb来创建Redis集群:redis-trib.rb create --replicas 0 127.0.0.1:6380 127.0.0.1:6381 127.0.0.1:6382 执行结果:当出现提示时,需要手动输入yes,输入后,当出现以下内容,说明已经创建了Redis集群检验是否真的创建成功,输入以下命令:redis-trib.rb check 127.0.0.1:6380出现以下信息,说明创建的Redis集群是没问题的使用Redis客户端Redis-cli.exe来查看数据记录数,以及集群相关信息D:/Redis/redis-cli.exe -c -p 6380-c 表示 cluster-p 表示 port 端口号输入dbsize查询 记录总数dbsize或者一次输入完整命令:D:/Redis/redis-cli.exe -c -p 6380 dbsize结果如下:输入cluster info可以从客户端的查看集群的信息:cluster info结果如下: 到此这篇关于Windows下搭建Redis集群的方法步骤的文章就介绍到这了。
2023年02月10日
46 阅读
0 评论
0 点赞